On almost even arithmetical functions via orthonormal systems on Vilenkin groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Herz-type Besov Spaces on Locally Compact Vilenkin Groups

Let G be a locally compact Vilenkin group. In this paper the characterizations of the Herz-type Besov space on G are obtained. And some properties of this space are discussed.

متن کامل

Non-Boolean Almost Perfect nonlinear Functions on Non-Abelian Groups

The study of nonlinear properties of Boolean functions is one of the major tasks in secret-key cryptography. But the adjective "nonlinear" has several meanings: it can be related to the resistance against the famous differential attack [2] and, in this interpretation, actually refers to (almost) perfect nonlinear functions. Moreover nonlinearity is also related to the maximum magnitude of the F...

متن کامل

On the Symmetry of Arithmetical Functions in Almost All Short Intervals, Iv

Abstract. We study the arithmetic (real) function f = g ∗ 1, with g “essentially bounded” and supported over the integers of [1, Q]. In particular, we obtain non-trivial bounds, through f “correlations”, for the “Selberg integral” and the “symmetry integral” of f in almost all short intervals [x − h, x + h], N ≤ x ≤ 2N , beyond the “classical” level, up to a very high level of distribution (for...

متن کامل

Translation Invariant Operators on Hardy Spaces over Vilenkin Groups

We show that a number of well known multiplier theorems for Hardy spaces over Vilenkin groups follow immediately from a general condition on the kernel of the multiplier operator. In the compact case, this result shows that the multiplier theorems of Kitada [6], Tateoka [13], Daly-Phillips [2], and Simon [11] are best viewed as providing conditions on the partial sums of the Fourier-Vilenkin se...

متن کامل

On the binomial convolution of arithmetical functions

Let n = ∏ p p νp(n) denote the canonical factorization of n ∈ N. The binomial convolution of arithmetical functions f and g is defined as (f ◦g)(n) = ∑ d|n (∏ p (νp(n) νp(d) )) f(d)g(n/d), where ( a b ) is the binomial coefficient. We provide properties of the binomial convolution. We study the Calgebra (A,+, ◦,C), characterizations of completely multiplicative functions, Selberg multiplicative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1991

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-60-2-105-123